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Evaluation of Space-Energy Factorization
for Two-Dimensional LMFBR Diffusion
Theory Problems

Weston M. Stacey, Jr.

Applied Physics Division, Argomne National Laboratory
Argonne, Illinois 60439

Use of a space-energy factorization (SEF) scheme to obtain approxi-
mate solutions to the energy-dependent neutron diffusion equation was
suggested in Ref. 1, where the method was successfully applied to one-
dimensional/24-group LMFBR models. Initial applications of the method
to two-dimensional/24-group and one-dimensional/165-group LMFBR models
were reported in Ref. 2. The purpose of this note is to report the
results of subsequent numerical studies undertaken to evaluate the effi-
cacy of the method for two-dimensional/24-group LMFBR models.

SEF has been incorporated into the inner iteration to obtain an

approximate solution to
H(r,E)¢(r,E) = j dE” K(r,E” > E) ¢(r,E”) + S(r,F) @b
E

by factoring the flux within each of several shape function intervals

IETRCRE S ) in the form
g— — gtl

¢(r,E) ~ a(E)wg(r) s E <B<E : 2)







18-1-2

Substituting relation (2) into Eq. (1) and integrating over the interval

Eg SEc< Eg vy yields equations for the shape functions, wg

g+l ngl
dE H(r,E)a(E) wg(r) = dE S(r,E)
E

g Eg'

g+l Bg’+1
dE dE” K(r,E” + E)a(E”) Wg,(r) s
E

(3)

and the same substitution together with an integration over space yields an

equation for the spectral function, a(E),

U dr H(r,E)wg(r{la(E) = f dr S(r,E)

Eg’+l
S dE” Jdr K(r,E” + E)y_.(r)[a(E") . (&)
< |E g
g g -
e g
In a typical calculation reported in this note, employing six shape-
function intervals, Eq. (4) would be solved on a 24-group basis for a(E).
The interval Eg RS Eg 41 Would contain 4 of the 24 groups, thus Egs. (3)
would be solved on a 6 broad-group basis.
On each inner iteration, y; from the previous inner iteration is used
to evaluate the spatial integrals in Eq. (4). Then a(E), E; < E < E, is
obtained by solving Eq. (4), and used to evaluate the energy integrals

over this interval in Eqs. (3). Then Eq. (3) is solved for y;. This
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value of y;, and ¥, from the previous inner iteration, are used to evalu-
ate the spatial integrals in Eq. (4), which is solved for a(E),

E; < E < E3. This value of a(E) is used to evaluate the energy inte-
grals over this interval in Egs. (3), which are then solved for ¥,. This
process is repeated for all shape function intervals.

The solution of Egs. (3), which are formally identical to the multi-
group equations, is accomplished iteratively with an ADI-B? method simi-
lar to that of Ref. 3. Equation (4), which is identical to the fundamen-
tal mode slowing-down equation, is solved directly.

Power iteration, with two-term Chebyschev extrapolation, was
employed for the outer iterations. One inner iteration per outer itera-
tion was used (i.e. the SEF procedure outlined above was used once each
outer iteration, and a single sweep in each direction was used in solving
Eq. (3) by the ADI-B2 scheme). Numerical experiments revealed that the
spectral function, a(E), did not change much from iteration to iteration
after the first few iterations. Accordingly, the spectral function was
recalculated each iteration for the first five iterations, and subse-
quently only recalculated every fifth outer iteration. For the direct
24-group solution the same iteration scheme was used (i.e. power iteration
with two-term Chebyschev extrapolation on the outer), so that a meaningful
evaluation of the computational savings associated with the SEF method
could be made.

Numerical studies of the SEF method were performed on three reactor
models typical of proposed LMFBRs. The geometric model is shown in
Fig. 1 (for Model 3 the X-dimensions were 50, 40, 40, and 10 cm), and the
campositions are given in Table I. Model 1 is very similar to models

which have been used in preliminary design studies for LMFBRs. Model 2






differs from Model 1 only in that the sodium has been completely voided
from Core 2 and Axial Blanket 2, and represents a hypothetical accident
condition. Model 3 was chosen to provide a more difficult test of the
SEF method; the sodium content in the two core regions is significantly
different and a significant amount of plutonium has been included in the
blankets.

The objectives of these studies were to evaluate the accuracy and
computational econamy of the SEF method, particularly relative to the
similar but simpler few-group approximations obtained by group collapsing, °
and to evaluate the efficacy of using the fission source from the SEF
solution as an initial guess to accelerate the convergence of direct 24-
group solutions. The few-group constants were obtained by collapsing
over a critically buckled 24-group spectrum for the composition of Core 1.

Results shown in Table II indicate that the SEF method is signifi-
cantly more accurate in the prediction of criticality than a few-group
method which employs the same number of spatial-shape calculations. Cal-
lations with only two shape functions are significantly more accurate
than two-group calculations in predicting the maximum power peaking, and
the six-shape function calculation is somewhat superior to the six-group
calculation in this respect. Regional power fractions are predicted better
by the two-shape function calculation than by the two-group calculation,
but there is little difference between the six-shape function and six-
group predictions, as indicated in Tables III-V. Power distributions
along the horizontal and vertical centerlines of Model 3 are shown in
Figs. 2 and 3.

For Models 1 and 2 the few-group predictions of breeding ratios are

samewhat better than the corresponding SEF predictions, due to compensating
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errors in the few-group calculations which predict too hard a spectrum
and too much flux in the blankets. This trend is reversed for Model 3.
These results are shown in Tables III-V.

The computation times and number of outer iterations associated with
the various calculations are shown in Table VI. The two-shape function
calculation is roughly a factor of 5 quicker than the direct solution,
and the six-shape function solution, which is quite accurate, is roughly
a factor of 3 quicker than the direct solution. Few group solution times
are 20-30% less than the corresponding shape function solution times.

The computation of the collapsing spectrum and the preparation of the
few-group constants has not been included in the former, but this will
not significantly alter the comparison.

Use of the fission source from the SEF calculation as a first guess
in the direct 2u-group solution significantly reduces (25-40%) both the
number of iterations and the total computing time relative to what is
required when the standard flat fission source is used as a first guess.
In this respect, use of the two-shape function solution is more economi-
cal than use of the more accurate six-shape function solution. Use of
the fission source from the few-group calculations may alsc reduce the
computing time required for the 24-group calculation, but this point has
not been investigated.

In summary, the SEF method provides an economical means for obtain-
ing approximate solutions to two-dimensional LMFBR diffusion theory prob-
lems. These solutions are sufficiently accurate for many applications,
and generally superior to the results of comparable few-group calculations.
Moreover, use of the SEF solution to accelerate the direct solution can

significantly reduce the computational time for the latter. Thus, it
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seems appropriate to conclude that the capability of multidimensional
diffusion theory codes designed to solve 20- to 30-group LMFBR problems
could be substantially enhanced by providing for the SEF calculation.
The necessary modifications should be minor, because Eqs. (3) can be
solved by the same routines which solve the conventional multigroup
equations and the solution of Eq. (4) is trivial. The strategy outlined
above for the SEF method is consistent with the group-ordering stategy
employed in many diffusion theory codes, so no major changes in data

management should be necessary.
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TABLE I

Compositions

Atomic Number Densities (at/cc x 102%)

Axial Axial Radial
Core 1 Core 2 Blanket 1 Blanket 2 Blanket Reflector
Models 1 and 2%
23%y | 0.001086 | 0.001501 S Ll 1. L
2887 0.006383 0.005380 | 0.008013 0.007383 0.014515 ———
23Na 0.01041 0.01098 0.00881 0.00950 0.00660 0.00440
56Fe 0.01814 0.01807 0.02u44Y4 0.02385 0.01728 0.06912
169 0.01494 0.01376 0.01603 0.01477 0.02903 -—
Model 3
239py 0.0009 0.0013 0.0002 0.0001 0.0003° —-
238y 0.0055 0.0048 0.0070 0.0070 0.0111° _—
23Na 0.0120 0.0080 0.0100 0.0070 0.0060° 0.0040
56Fe 0.0180 0.0180 0.0240 0.0240 0.0170 0.0690
16 0.0150 0.0140 0.0160 0.0150 0.0290 _—
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TABLE II

Errors in ke £f and Maximum Power Peaking

k (% Error) P (% error)
eff max
Calculation Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3

2°SF -0.8 -0.2 -0.6 2l 1L +0.1 -0.8
4 SF -0.2 -— -— E0ES -— -—
6 SF +0.1 053 0 +0.4 -0.6 +0.6
2-group +1.2 152 -6.5 -3.4 -1.0 +5.6
6-group +0.4 +0.4 -0.9 +0.7 T0R7 +1.0

0T






TABLE III

Breeding Ratio and Power Fraction, Model 1

Breeding Rat io®

Power Fraction (%)

Axial Radial Axial Radial
Calculation Total Blanket Blanket Core 1 Core 2 Blanket Blanket Core 1 Core 2
24-group 1.164 0.305 0.206 0.499 0.154 1.3 1.3 64.6 32.8
2 SF 1.109 0.260 0.190 0.496 0.164 2.6 2.4 62.3 32.7
4 SF 1.131 0.280 0.195 0.498 0.158 1.7 1.6 63.9 32.8
6 SF 1.136 0.287 0.196 0.496 0.156 1.4 1.3 64.3 33.0
2-group 1.118 0.265 0.196 0.495 0.162 3.0 2.7 62.1 32.2
6-group 1.143 0.289 0.199 0.u498 0.157 1.4 1.3 64.3 33.0

6T+
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TABLE IV

Breeding Ratio and Power Fraction, Model 2

Breeding Ratio®

Power Fraction (%)

Axial Radial Axial Radial
Calculation Total Blanket Blanket Core 1 Core 2 Blanket Blanket Core 1 Core 2
24-group 1.025 0.316 0.063 0.493 0.153 1.4 0.6 63.9 34.1
288F 0.943 0.263 0.045 0.476 0.159 2.8 0.7 62.5 34.0
6 SF 0.994 0.295 0.058 0.488 0.153 1.5 0.6 64.3 33.6
2-group 0.970 0.273 0.045 0.490 0.162 32 0.7 62.5 33.6
6-group 1.014 0.302 0.059 0.496 0.158 1.5 0.6 63.8 34.1

A8

0T=T+
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Breeding Ratio and Power Fraction, Model 3

Table V

Breeding Ratio®

Power Fraction (%)

Axial Radial Axial Radial
Calculation Total Blanket Blanket Core 1 Core 2 Blanket Blanket Core 1 Core 2
24-group 1.062 0.285 0.227 0.347 0.203 9.1 4.8 42.9 43.2
2 SF 15027 02257 0.210 0.3u44 0.216 9.5 5.6 41.5 43.4
6 SF 1.044 0.274 0.217 0.347 0.206 8.9 ¥ 43.0 43.4
2-group 1.024 0.248 0.198 0.350 0.228 8.3 4.5 41.6 45.6
6-group 1.037 0.271 0.213 0.3u46 0.206 8.8 4.8 43.0 43.5

€T
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Computational Times and Iterations

TABLE VI

Model 1 Model 2 Model 3

: No. | . d Noag . d Nas ad
Calculation Iterations min Iterations min Iterations min
24-group 15 10.90 15 11.26 15 8.87
2 SF 15 2.05 17 1.98 15 1.76
6 SF 16 3.10 16 3.23 14 2.48
2-group 15 —— 15 1.39 15 1.23
6-group 15 - 15 2.53 15 1.99
24-group/2 SF® 7 7.05 7 7.24 7 5.90
24-group/6 SF® 7 8.10 = s 6 6.03

hT

P4 =t G
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Footnotes for Tables:

3For Model 2, the sodium number density was zero for Core 2 and
Axial Blanket 2.

bFor that portion of the radial blanket which extends above the core

axially, 239%pu = 0.0001, 238y = 0.0112, 23Na = 0.0070.

SThe breeding ratio for a region is defined as the ratio of the 238U
g

capture in that region to the 23°Pu absorption in the entire reactor.

The total breeding ratio then results as a sum of region breeding ratios.

dCentral Processing Unit, IBM-360-50/75.

®The fission source from the 2- (or 6) shape SEF calculation was used
as an initial guess in the 24-group calculation. The computing time in-
cludes the time required for the SEF calculation and the time required

for the 24-group calculation.
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1.

3.

FIGURE CAPTIONS

Two-dimensional LMFBR model.

Power distribution along vertical centerline (left boundary) for Model 3.

Power distribution along horizontal centerline (lower boundary) for
Model 3.



SVDITTAD §

i -

it %" o)

g chwesdial
By Ao

L,




40 cm AXIAL BLANKET 1 AX 1AL
BLANKET 2
2
m
=l m
- RADIAL gl PPN
=) BLANKET | S| &
o)
40 cm CORE 1 CORE 2
~}~—30 cm 35 cm—~{10 |-

F+60 cm

Vé =0

Fig. 1. Two-dimensional LMFBR model.
(ANL Neg. No. 116-634)
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